3D 프린팅 지지체를 활용한 골재생
3D printing bone graft system
김민지 외, Biofabrication, 16, 025014 (2024).
본 연구에서는 PCL으로 만들어진 3D 프린팅 스캐폴드에 낙엽적층구조를 입힌 3D-PLSS를 개발하였으며, 이 스캐폴드에 BMP-2를 탑재하여 골 형성을 촉진하도록 하였다. 스캐폴드를 구성하고 있는 strand의 표면에 낙엽적층구조를 얇은 층으로 도입하고, 단순 흡착을 통해 BMP-2를 도입하여 생리활성인자가 일정 기간 동안 서서히 방출될 수 있도록 설계하였다. 이 스캐폴드가 뼈 재생을 촉진할 수 있음을 세포 배양과 동물 연구을 통해 검증하였다. 이러한 결과를 통해, 생리 활성 분자를
탑재한 3D 프린팅 스캐폴드와 낙엽적층구조의 조합이 향후 임상 및 연구 분야에서 널리 사용될 수 있을 것으로 기대되었다.
Although three-dimensional (3D) printing techniques are used to mimic macro- and micro-structures as well as multi-structural human tissues in tissue engineering, efficient target tissue regeneration requires bioactive 3D printing scaffolds. In this study, we developed a bone morphogenetic protein-2 (BMP-2)-immobilized polycaprolactone (PCL) 3D printing scaffold with leaf-stacked structure (LSS) (3D-PLSS-BMP) as a bioactive patient-tailored bone graft. The unique LSS was introduced on the strand surface of the scaffold via heating/cooling in tetraglycol without significant deterioration in physical properties. The BMP-2 adsorbed on 3D-PLSS-BMP was continuously released from LSS over a period of 32 d. The LSS can be a microtopographical cue for improved focal cell adhesion, proliferation, and osteogenic differentiation. In vitro cell culture and in vivo animal studies demonstrated the biological (bioactive BMP-2) and physical (microrough
structure) mechanisms of 3D-PLSS-BMP for accelerated bone regeneration. Thus, bioactive molecule-immobilized 3D printing scaffold with LSS represents a promising physically and biologically activated bone graft as well as an advanced tool for widespread application in clinical and research fields.